
1

Python Basics

1. help () … help section is where you can find all python functions, symbols ETC, you

also find directly specific topic if you already knew your topic example let us find list…

>>>help (‘lists’).

2. Running: Before you running your code save it with suing python extension (.PY)

example: test.py

3. Variable

o A variable is like a container that stores a value. You give the container a

name, and then assign a value to it using the = sign.

▪ Examples:

• name = "Alice"

• age = 25

• height = 5.6

• is_student = True

o Rules for variable names:

▪ Must start with a letter or underscore (_)

▪ Can contain letters, digits, and underscores

▪ Case-sensitive (age and Age are different)

4. Python Data Types

o Integer (int): Used to store whole numbers (no decimals).

▪ apples = 10

print(apples) # Output: 10

print(type(apples)) # Output: <class 'int'>

o Float (float): Used for decimal or fractional numbers.

▪ price = 19.99

print(price) # Output: 19.99

print(type(price)) # Output: <class 'float'>

o String (str): A sequence of characters, usually inside quotes.

▪ message = "Hello, world!"

print(message) # Output: Hello, world!

print(type(message)) # Output: <class 'str'>

o Boolean (bool): Represents either True or False.

▪ is_sunny = True

print(is_sunny) # Output: True

print(type(is_sunny)) # Output: <class 'bool'>

o List: An ordered collection that can be changed (mutable). Use square

brackets.

▪ fruits = ["apple", "banana", "cherry"]

print(fruits[1]) # Output: banana

print(type(fruits)) # Output: <class 'list'>

2

o Tuple: Like a list, but cannot be changed (immutable). Use parentheses.

▪ coordinates = (10.5, 20.3)

print(coordinates[0]) # Output: 10.5

print(type(coordinates))# Output: <class 'tuple'>

o Dictionary (dict): Stores data as key–value pairs. Use curly braces.

▪ person = {"name": "Alice", "age": 25}

print(person["name"]) # Output: Alice

print(type(person)) # Output: <class 'dict'>

o Set: An unordered collection with no duplicates. Use curly braces.

▪ unique_numbers = {1, 2, 3, 3}

print(unique_numbers) # Output: {1, 2, 3}

print(type(unique_numbers)) # <class 'set'>

5. comments: In Python, comments are used to explain code and make it more

readable. They are ignored by the Python interpreter.

o Single-line Comments: Use the # symbol. Anything after # on that line is a

comment.

▪ # This is a single-line comment

▪ print("Hello, World!") # This prints a message

o Multi-line Comments: There is no official multi-line comment syntax in

Python, but you can use multiple # lines.

▪ # This is a comment

▪ # that spans multiple

▪ # lines

▪ Or use triple quotes (although this technically creates a string, not a

comment — it's useful for docstrings or placeholder comments):

"""

This is a multi-line

string that can be used

as a comment (not recommended for actual commenting)

6. Arithmetic Operators: Arithmetic operators are used to perform mathematical
operations.

o

Operator Description Example Result
+ Addition 5 + 3 8

- Subtraction 10 - 4 6

* Multiplication 7 * 6 42

/ Division 8 / 2 4.0

// Floor Division 9 // 2 4

% Modulus (remainder) 9 % 2 1

** Exponentiation 2 ** 3 8

3

o Examples:
▪ a = 10

b = 3

print(a + b) # 13
print(a - b) # 7
print(a * b) # 30
print(a / b) # 3.333...
print(a // b) # 3
print(a % b) # 1
print(a ** b) # 1000

7. Logical Operators: Logical operators are used to combine conditional statements
(typically boolean expressions).

o Examples:
▪ And

• # Both must be True

• print(True and True) # True
print(True and False) # False

a = 10
b = 5
result = (a > 0) and (b < 10)
print(result) # True

▪ or

• # One must be True

• print(False or True) # True
print(False or False) # False

x = 7
y = 12
print((x < 5) or (y > 10)) # True

▪ not

• print(not True) # False
print(not False) # True

z = 8
print(not (z == 8)) # False

Operator Description Example Result
And Returns True if both are True True and False False

Or Returns True if one is True True or False True

Not Reverses the boolean value not True False

4

8. String manipulation: String manipulation in Python involves creating, modifying, and

analyzing strings. Here are the most important concepts and examples to get you

started:

o Creating Strings: s = "Hello, World!"

o Common String Methods

▪ s.lower() - Convert to lowercase

'HELLO'.lower() → 'hello'

▪ s.upper() - Convert to uppercase

'hello'.upper() → 'HELLO'

▪ s.strip() - Remove leading/trailing whitespace

' hi '.strip() → 'hi'

▪ s.replace(a, b) - Replace a with b

'hi ho'.replace('ho','hello')

▪ s.split(',') - Split into list by delimiter

'a,b,c'.split(',') → ['a','b','c']

▪ '--'.join(list) - Join list into string

'--'.join(['a','b']) → 'a--b'

▪ s.find('text') - Find first index of substring

'hello'.find('l') → 2

o Indexing and Slicing

s = "CyberSec"

print(s[0]) # 'C'

print(s[-1]) # 'c'

print(s[1:4]) # 'ybe'

print(s[:]) # Full copy: 'CyberSec'

o String Formatting

▪ name = "Alice"

age = 30

print(f"My name is {name} and I'm {age}") # f-strings

print("My name is {} and I'm {}".format(name, age))

o Checking Content

▪ s = "admin123"

s.isdigit() # False

s.isalpha() # False

s.isalnum() # True

s.startswith("adm") # True

s.endswith("123") # True

5

9. Type conversion: Type conversion in Python refers to changing the data type of a

value from one type to another. There are two main types of conversions:

o Implicit Type Conversion: Python automatically converts one data type to

another without user involvement.

▪ x = 10 # int

y = 3.5 # float

z = x + y # int + float -> float

print(z) # Output: 13.5

print(type(z)) # <class 'float'> // Python converts int to float during

addition to avoid loss of information.

o Explicit Type Conversion (Type Casting): You manually convert the data type

using built-in functions like int(), float(), str(), etc.

▪ int() – Converts to integer

▪ float() – Converts to float

▪ str() – Converts to string

▪ bool() – Converts to Boolean

▪ list(), tuple(), set() – Convert to respective collections

▪ Examples

• # String to int

a = "123"

b = int(a)

print(b, type(b)) # Output: 123 <class 'int'>

• # Float to int (truncates decimal)

c = int(4.99)

print(c) # Output: 4

• # Int to string

d = str(100)

print(d, type(d)) # Output: '100' <class 'str'>

• # String to list

e = list("hello")

print(e) # Output: ['h', 'e', 'l', 'l', 'o']

6

Control Flow

1. if, elif, else Statements: In Python, if, elif, and else statements are used for

conditional execution. They allow your code to make decisions based on certain

conditions.

o Syntax Overview

▪ if condition1:

 # code block if condition1 is True

elif condition2:

 # code block if condition2 is True

else:

 # code block if none of the above conditions are True

o Examples

▪ Basic if statement

• x = 10

if x > 5:

 print("x is greater than 5")

▪ Using if and else

• x = 3

if x > 5:

 print("x is greater than 5")

else:

 print("x is not greater than 5")

▪ Using if, elif, and else

• x = 5

if x > 5:

 print("x is greater than 5")

elif x == 5:

 print("x is exactly 5")

else:

 print("x is less than 5")

▪ Multiple elif conditions

grade = 85

if grade >= 90:

 print("A")

elif grade >= 80:

 print("B")

elif grade >= 70:

 print("C")

else:

 print("F")

7

o real-world example: using user input for a simple login system: Example:

Simple Login Check:

• The user is prompted to enter their username and password.

• The program checks:

o If both are correct → Login successful.

o If the username is wrong → Incorrect username.

o If the password is wrong → Incorrect password.

• It uses if, elif, and else to make decisions based on the input.

Predefined correct username and password

correct_username = "admin"

correct_password = "1234"

Get input from the user

username = input("Enter username: ")

password = input("Enter password: ")

Check login credentials

if username == correct_username and password == correct_password:

 print("Login successful!")

elif username != correct_username:

 print("Incorrect username.")

elif password != correct_password:

 print("Incorrect password.")

else:

 print("Login failed.")

2. for Loops: for loop is used to iterate over a sequence like a list, string, or range of

numbers.

o Basic Syntax:

▪ for variable in sequence:

▪ # do something

o Examples

▪ Simple Example:

• fruits = ["apple", "banana", "cherry"]

for fruit in fruits:

 print("I like", fruit)

8

▪ Looping through a string

• for letter in "hello":

 print(letter)

▪ Using range() to loop a specific number of times

• for i in range(5):

 print(i) //This prints: 0 1 2 3 4 (not 5)

▪ Using enumerate(): enumerate() is a built-in Python function that

adds a counter (index) to an iterable like a list or string. It lets you loop

through both the index and the item at the same time.

• fruits = ["apple", "banana", "cherry"]

for index, fruit in enumerate(fruits):

 print(index, fruit)

Example Without enumerate()

fruits = ["apple", "banana", "cherry"]

index = 0

for fruit in fruits:

 print(index, fruit)

 index += 1

3. while Loops: In Python, a while loop is used to repeatedly execute a block of code as

long as a given condition is true.

o Syntax:

▪ while condition:

▪ # code block

• The condition is evaluated before each iteration.

• The loop continues until the condition becomes False.

o Summary

▪ Break: Exit the loop

▪ Continue: skip current iteration

▪ Pass: Do nothing (placeholder only)

o Example:

▪ count = 0

while count < 5:

 print("Count is:", count)

 count += 1

Count is: 0

Count is: 1

Count is: 2

Count is: 3

Count is: 4

9

▪ Infinite Loop

• while True:

 print("This will run forever unless you break it.")

 break # used to stop the loop

▪ Using break and continue

• x = 0

while x < 5:

 x += 1

 if x == 3:

 continue # skip this iteration

 if x == 5:

 break # exit the loop

 print(x)

1

2

4

▪ Beware of Infinite Loops: If the condition never becomes False, the

loop will run forever. Make sure the loop has a condition that will

eventually be false, or use break wisely.

• # This is an infinite loop

while 1 == 1:

 print("Looping forever")

▪ Real-Life Example: ATM PIN Entry - Imagine an ATM allows a user 3

attempts to enter the correct PIN before locking the account.

• correct_pin = "1234"

attempts = 0

max_attempts = 3

while attempts < max_attempts:

 entered_pin = input("Enter your PIN: ")

 if entered_pin == correct_pin:

 print("Access granted.")

 break

 else:

 print("Incorrect PIN.")

 attempts += 1

if attempts == max_attempts:

 print("Account locked. Too many failed attempts.")

10

Functions

1) Defining and Calling Functions

o Use the def keyword followed by the function name and parentheses ():

o Calling a Function: You call a function by writing its name followed by

parentheses:

o Example

▪ def greet():

 print("Hello, world!")

greet() #calling

This defines a function named greet that prints Hello world!

2) Function Parameters and Return Values

o Functions with Parameters

▪ def greet(name):

 print(f"Hello, {name}!")

greet("Alice")

o Function with Return Value (No Parameters)

▪ def get_greeting():

 return "Hello, world!"

message = get_greeting()

print(message) # Output: Hello, world!

o Function with Parameters and Return Value

▪ def add(a, b):

 return a + b

result = add(5, 3)

print(result) # Output: 8

o Multiple Parameters and Multiple Return Values

▪ def calculate(a, b):

 sum_ = a + b

 diff = a - b

 return sum_, diff

s, d = calculate(10, 4)

print("Sum:", s) # Output: Sum: 14

print("Difference:", d) # Output: Difference: 6

o Default Parameter Values: If a parameter isn't passed, the default is used.

▪ def greet(name="Guest"):

 print(f"Hello, {name}!")

greet() # Output: Hello, Guest!

greet("Sam") # Output: Hello, Sam!

11

o Keyword Arguments: Arguments can be passed using the parameter names.

▪ def introduce(name, age):

 print(f"{name} is {age} years old.")

introduce(age=25, name="John") # Output: John is 25 years old.

o Variable Number of Arguments (*args and **kwargs)

▪ *args – multiple positional arguments:

• def total(*args):

 return sum(args)

print(total(1, 2, 3, 4)) # Output: 10

▪ **kwargs – multiple keyword arguments:

• def display_info(**kwargs):

 for key, value in kwargs.items():

 print(f"{key}: {value}")

display_info(name="Alice", age=30)

Output:

name: Alice

age: 30

o Functions Calling Other Functions

▪ def square(x):

 return x * x

def double_square(y):

 return 2 * square(y)

print(double_square(3)) # Output: 18

3) Scope (Global vs Local Variables)

o Local Variables

▪ Declared inside a function.

▪ Only accessible within that function.

▪ Created when the function starts, destroyed when it ends.

▪ Example

• def greet():

 message = "Hello" # local variable

 print(message)

greet()

print(message) # This would raise an error: NameError

12

o Global Variables

▪ Declared outside of any function.

▪ Can be accessed from anywhere in the script.

▪ If used inside a function, they are read-only unless explicitly declared

global.

▪ Example

• name = "Alice" # global variable

def greet():

 print("Hello", name) # accesses global variable

greet()

▪ Modifying Global Variables Inside Functions: Use the global keyword

to modify a global variable inside a function.

• count = 0

def increment():

 global count

 count += 1

increment()

print(count) # Output: 1

Error Handling

1. In Python, error handling is done using the try, except, else, and finally blocks. These

allow you to catch and respond to exceptions (errors) in a controlled way.

o Description of Each Clause

▪ try: Wrap code that might fail.

▪ except: Handle specific or generic exceptions.

▪ else: Runs only if the try block did not raise an exception.

▪ finally: Always runs, useful for cleanup (like closing files or

connections).

o Basic Structure

▪ try:

 # Code that might raise an exception

▪ except SomeException:

 # Code that runs if the exception occurs

▪ else:

 # Code that runs if no exception occurs

▪ finally:

 # Code that always runs, no matter what

13

o Examples

▪ try + except: Catch errors - Catch and handle specific errors (e.g.,

invalid input).

• try:

 number = int(input("Enter a number: "))

except ValueError:

 print("That's not a valid number.")

▪ try + except + else: Run code if no error happens - Use else to run

code only when no exception is raised.

• try:

 number = int(input("Enter a number: "))

except ValueError:

 print("That's not a valid number.")

else:

 print(f"You entered: {number}")

▪ try + except + finally: Run cleanup code regardless of error - Always

run final code (e.g., close files, release resources).

• try:

 number = int(input("Enter a number: "))

except ValueError:

 print("That's not a valid number.")

finally:

 print("Input attempt finished.")

▪ Full Structure: try + except + else + finally

• try:

 number = int(input("Enter a number: "))

 result = 10 / number

except ValueError:

 print("Invalid input! Not a number.")

except ZeroDivisionError:

 print("Cannot divide by zero.")

else:

 print(f"Result is: {result}")

finally:

 print("Done with operation.")

Behavior:

i. Input 5 → prints result and "Done with

operation."

ii. Input abc → catches ValueError.

iii. Input 0 → catches ZeroDivisionError.

iv. In all cases → finally runs

14

2. Custom exceptions using the ‘raise’: The raise statement lets you manually trigger an

exception. You can raise built-in exceptions like ValueError, or define your own

custom exceptions.

o Raising a Built-in Exception: If the user enters -5, Python raises:

ValueError: Age cannot be negative!

▪ age = int(input("Enter your age: "))

if age < 0:

 raise ValueError("Age cannot be negative!")

o Defining a Custom Exception

▪ class NegativeAgeError(Exception):

 """Custom exception for negative ages."""

 Pass

This defines a new exception type. You can now raise it like any built-

in error.

o Raising a Custom Exception

▪ class NegativeAgeError(Exception):

 pass

age = int(input("Enter your age: "))

if age < 0:

 raise NegativeAgeError("Custom: Age cannot be negative!")

Output (if -3 is entered):

NegativeAgeError: Custom: Age cannot be negative!

o Handling Custom Exceptions with try/except

▪ class NegativeAgeError(Exception):

 pass

try:

 age = int(input("Enter your age: "))

 if age < 0:

 raise NegativeAgeError("Custom: Age cannot be negative!")

except NegativeAgeError as e:

 print(f"Caught error: {e}")

Data Structures

1. lists

o Creating a List

▪ my_list = [1, 2, 3, 4, 5]

▪ mixed_list = [1, "hello", 3.14, True]

o Accessing List Items

▪ print(my_list[0]) # First item: 1

▪ print(my_list[-1]) # Last item: 5

15

o Modifying Lists

▪ my_list[1] = 20 # Changes 2 to 20

▪ my_list.append(6) # Adds 6 to the end

▪ my_list.insert(2, 15) # Inserts 15 at index 2

▪ my_list.remove(4) # Removes the first occurrence of 4

▪ my_list.pop() # Removes and returns the last item

o List Operations

▪ new_list = my_list + [7, 8] # Concatenation

print(len(my_list)) # Length of list

o Iterating Over a List

▪ for item in my_list:

 print(item)

o Slicing Lists

▪ print(my_list[1:4]) # Items from index 1 to 3

▪ print(my_list[:3]) # First 3 items

▪ print(my_list[::-1]) # Reversed list

o Useful List Methods

▪ my_list.sort() # Sorts in place

▪ my_list.reverse() # Reverses in place

▪ print(my_list.index(20)) # Finds index of 20

▪ print(my_list.count(20)) # Counts occurrences of 20

2. Tuples: tuple is an ordered, immutable collection of elements. This means once a

tuple is created, its contents cannot be changed (unlike lists). Tuples are commonly

used to group related data.

o Creating a Tuple

▪ # Using parentheses

my_tuple = (1, 2, 3)

▪ # Without parentheses (optional)

another_tuple = 4, 5, 6

▪ # Single-element tuple (note the comma)

single_element = (10,)

o Accessing Elements

▪ print(my_tuple[0]) # Output: 1

▪ print(my_tuple[-1]) # Output: 3

o Slicing

▪ print(my_tuple[1:]) # Output: (2, 3)

▪ print(my_tuple[:2]) # Output: (1, 2)

16

o Tuple Packing and Unpacking

▪ # Packing

▪ person = ("Alice", 30, "Engineer")

Unpacking

name, age, job = person

print(name) # Output: Alice

o Common Tuple Operations

▪ # Concatenation

a = (1, 2)

b = (3, 4)

c = a + b # (1, 2, 3, 4)

Repetition

d = a * 3 # (1, 2, 1, 2, 1, 2)

Membership

print(2 in a) # True

Length

len(a) # 2

Count and Index

(1, 2, 1, 3).count(1) # 2

(1, 2, 3).index(2) # 1

3. Dictionary: a dictionary is a built-in data type that stores key-value pairs. Dictionaries

are unordered, mutable, and indexed by keys, which can be strings, numbers, or

even tuples (if immutable).

o Basic Syntax

▪ # Creating a dictionary

my_dict = {

 "name": "Alice",

 "age": 25,

 "is_hacker": True

}

o Common Operations

▪ # Accessing a value

print(my_dict["name"]) # Output: Alice

Using .get() (avoids error if key is missing)

print(my_dict.get("email", "Not found")) # Output: Not found

17

Adding or updating a value

my_dict["email"] = "alice@example.com"

Removing a key-value pair

del my_dict["age"] # or use .pop()

o Iterating Over a Dictionary

▪ for key in my_dict:

 print(key, my_dict[key])

or

for key, value in my_dict.items():

 print(f"{key}: {value}")

o Useful Methods

▪ my_dict.keys() # returns all keys

▪ my_dict.values() # returns all values

▪ my_dict.items() # returns all (key, value) pairs

▪ my_dict.clear() # removes all items

o Example Use Case

▪ # Count frequency of characters in a string

s = "hacker"

freq = {}

for char in s:

 freq[char] = freq.get(char, 0) + 1

print(freq) # Output: {'h': 1, 'a': 1, 'c': 1, 'k': 1, 'e': 1, 'r': 1}

4. Sets: a set is an unordered collection of unique, immutable elements. Sets are

useful when you want to store items without duplicates and perform operations like

union, intersection, and difference.

o Basic Properties

▪ Unordered: Items have no index or order.

▪ Mutable: You can add/remove items.

▪ Unique elements: Duplicates are automatically removed.

o Creating a Set

▪ my_set = {1, 2, 3}

empty_set = set() # NOT {} — this creates a dictionary

o Common Set Methods

▪ s = {1, 2, 3}

▪ s.add(4) # {1, 2, 3, 4}

▪ s.remove(2) # {1, 3, 4}

▪ s.discard(5) # No error if 5 isn't present

▪ s.pop() # Removes a random element

▪ s.clear() # Empties the set

18

o Rules to Identify Set or Dictionary: The syntax {} can be confusing in Python

because it's used for both dictionaries and sets, but there's a key difference:

▪ If the elements look like key-value pairs (key: value), it's a dictionary.

▪ If the elements are single values (no colons), it's a set.

▪ If you do {} without anything inside, it creates an empty dictionary,

not a set.

▪ s = {1, 2, 3}

print(type(s)) # <class 'set'>

d = {"a": 1}

print(type(d)) # <class 'dict'>

empty = {}

print(type(empty)) # <class 'dict'>

empty_set = set()

print(type(empty_set)) # <class 'set'>

o Set Operations

▪ a = {1, 2, 3}

b = {3, 4, 5}

a | b # Union => {1, 2, 3, 4, 5}

a & b # Intersection => {3}

a - b # Difference => {1, 2}

a ^ b # Symmetric Difference => {1, 2, 4, 5}

o Useful Functions

▪ len(s) # Number of items

▪ 3 in s # Check if 3 is in the set

5. Nested data structures (like dictionaries inside lists, lists inside dictionaries, or

deeper nesting)

o List inside a List

▪ data = [[1, 2], [3, 4], [5, 6]]

for sublist in data:

 for item in sublist:

 print(item)

o List of Dictionaries

▪ data = [

 {"name": "Alice", "age": 25},

 {"name": "Bob", "age": 30}

]

for person in data:

 for key, value in person.items():

 print(f"{key}: {value}")

19

o Dictionary with List Values

▪ data = {

 "fruits": ["apple", "banana"],

 "vegetables": ["carrot", "lettuce"]

}

for category, items in data.items():

 print(f"{category}:")

 for item in items:

 print(f" {item}")

o Dictionary inside a Dictionary

▪ data = {

 "server1": {"ip": "192.168.1.1", "status": "active"},

 "server2": {"ip": "192.168.1.2", "status": "inactive"}

}

for server, info in data.items():

 print(f"{server}:")

 for key, value in info.items():

 print(f" {key} = {value}")

o List of Dicts with Nested Dicts

▪ data = [

 {

 "user": "alice",

 "info": {"email": "alice@example.com", "active": True}

 },

 {

 "user": "bob",

 "info": {"email": "bob@example.com", "active": False}

 }

]

for item in data:

 print(item["user"])

 for key, value in item["info"].items():

 print(f" {key}: {value}")

20

OOP

1. constructor __init__: The constructor method to initialize attributes when creating

an object.

o The __init__ method is a special method in Python. It’s called automatically

when you create a new object from a class. Its main job is to initialize (set

up) the object’s attributes (the data it holds).

o Think of __init__ like this:

▪ When you build a new car, the __init__ method is like the assembly

process that gives it its color, engine, and wheels.

▪ When you create an object, __init__ sets up its initial values.

o Syntax:

▪ def __init__(self, parameter1, parameter2, ...):

 self.attribute1 = parameter1

 self.attribute2 = parameter2

#self refers to the current object being created.

#parameter1, parameter2, etc., are values you pass when creating the

object.

#Inside __init__, you use self.attribute = value to store those values in

the object.

2. Classes and Objects: A class is like a blueprint for creating objects. An object is an

instance of a class. The class defines the properties and behaviors, while the object is

an actual entity created using that class.

o Attributes: Variables that belong to the object (instance variables).

o Methods: Functions that belong to the class and define the object's behavior.

o In the example below, name and age are attributes, and bark() is a method.

o Example

▪ # Define a class

class Dog:

 # Define attributes and behaviors (methods) in the class

 def __init__(self, name, age):

 self.name = name # Attribute: name of the dog

 self.age = age # Attribute: age of the dog

 def bark(self):

 print(f"{self.name} says woof!")

Create an object (instance of the class)

my_dog = Dog("Buddy", 3)

Access object attributes

21

print(my_dog.name) # Output: Buddy

print(my_dog.age) # Output: 3

Call the object method

my_dog.bark() # Output: Buddy says woof!

3. Inheritance: Inheritance allows a class to inherit attributes and methods from

another class. The new class (child class) can extend or modify the behavior of the

parent class.

o class father: #declaring class with name father

class son (father): #now class son inherits all class father’s activities

o Class A:

Class B: #let’s say there is no relationship b/w class A and B

Class C (A,B): # class C, inherits both classes A and B

o Example

▪ # Parent class

class Animal:

 def __init__(self, name):

 self.name = name

 def speak(self):

 print(f"{self.name} makes a sound.")

Child class

class Dog(Animal):

 def __init__(self, name, breed):

 super().__init__(name) # Call the parent constructor

 self.breed = breed

 def bark(self):

 print(f"{self.name} says woof!")

Create an object of the child class

my_dog = Dog("Buddy", "Golden Retriever")

my_dog.speak() # Inherited from Animal class

my_dog.bark() # Defined in Dog class

#super(): A function that allows the child class to call methods from

the parent class.

22

File and Log Handling

1. External Files:

o Syntax:

▪ variable = open (“ file_name.extension ” , “ reason “)

▪ The reason will be one of these

✓ “r” = read, this means I am opening the file for reading

✓ “w “= write, when you use “w” in existed file it will overwrite,

this means it will delete the previous file and write new things,

we can also use “w” to create a file

✓ “a “= append, adding something at the end of the file without

deleting.

✓ “r+ “= read and write

▪ Creating file “w”

✓ student_file = open (‘student.txt’, ‘w’)

student_file.write(‘ New student record file \n ‘)

student_file.close()

▪ Reading files “r”

✓ student_file = open (‘student.txt’, ‘r’)

✓ print(student_file.readable()) #this function returns True or

False, if the file is readable it will return True else False

✓ print(student_file.read()) #this function reads and prints all

the data in the file

✓ print(student_file.readlines()[1]) // reading specific line if you

only want, like this example I am only reading and printing line

index [1]

✓ student_file.close()

▪ Writing files “w”: Let’s say we have student.txt (file) and their record

of the student so if you want to overwrite (deleting the previous

record and writing new one) use “w” open and then overwrite

examples

✓ student_file = open (‘student.txt’, ‘w’)

student_file.write(‘ student name is adan \n ‘)

student_file.close()

▪ Append “a”: Append is adding something to an existed file without

deleting anything , and append will add at the last

✓ student_file = open (‘student.txt’, ‘a’)

✓ student_file.write(‘ student age 26 \n ‘)’

✓ student_file.close()

23

2. working with file paths

o Working with file paths in Python means managing how your Python

program locates and interacts with files and directories in the file system—

like opening, reading, writing, or checking if a file exists.

o This is especially important when:

▪ Writing cross-platform code (Linux, Windows, macOS).

▪ Automating file operations (like in cybersecurity scripts or log

analysis).

▪ Navigating through directories or generating reports.

o The best and most modern way to handle paths is using the pathlib module,

introduced in Python 3.4.

o Import the Module:

from pathlib import Path

o Locating a File or Directory: This means pointing your program to the location

of a file or folder using a path.

▪ from pathlib import Path

Pointing to a file path (relative path)

file_path = Path("data/example.txt")

Pointing to a directory

folder_path = Path("data/logs")

▪ If the path is absolute, it will look like this:

file_path = Path("/home/user/data/example.txt")

o Checking If a File or Directory Exists: Before opening or modifying a file, it’s

important to make sure it exists.

▪ from pathlib import Path

file_path = Path("data/example.txt")

if file_path.exists():

 print("The file exists.")

else:

 print("The file does NOT exist.")

o Checking If It's a File or Directory: To know what you're working with—file or

folder.

▪ if file_path.is_file():

 print("It's a file.")

if file_path.is_dir():

 print("It's a folder.")

24

o Appending to a File (Add Without Overwriting): pathlib doesn’t support

append directly, so use open():

▪ with file_path.open("a") as file:

 file.write("\nAnother line.")

o Getting File Details: You can extract file name, extension, parent folder, etc.

▪ print(file_path.name) # example.txt

▪ print(file_path.stem) # example

▪ print(file_path.suffix) # .txt

▪ print(file_path.parent) # data/

o Finding Files in a Folder: List files or search for specific types (e.g., .log files).

▪ logs_folder = Path("data/logs")

for log_file in logs_folder.glob("*.log"):

 print(log_file)

✓ #Use .rglob("*.log") to search recursively in subfolders too.

o Creating a Directory: If it doesn’t exist, create it.

▪ new_folder = Path("output/reports")

new_folder.mkdir(parents=True, exist_ok=True)

o Delete a file

▪ if file_path.exists():

 file_path.unlink()

o Delete an empty folder)

▪ if new_folder.exists():

 new_folder.rmdir()

3. handling large log files

o Large log files (like .log, .txt, .pcap, etc.) can be several GBs in size. You can’t

load the entire file into memory at once, or it will crash your program. So you

need to:

▪ Read logs line by line

▪ Filter or extract important information efficiently

▪ Avoid memory overload

o Reading Large Log Files Line by Line: Use a for loop with open(), which is

memory efficient (This reads one line at a time — good for logs with millions

of lines.)

▪ with open("server.log", "r") as log_file:

 for line in log_file:

 print(line.strip()) # .strip() removes extra newlines

o Filter Specific Lines (e.g., Errors Only) : This only prints lines that contain

"ERROR" — useful for parsing alerts or issues.

▪ with open("server.log", "r") as log_file:

 for line in log_file:

 if "ERROR" in line:

 print(line.strip())

25

o Write Filtered Results to a New File: This creates a smaller file with only the

important parts — good for forensic analysis or backups.

▪ with open("server.log", "r") as source, open("errors.log", "w") as

target:

 for line in source:

 if "ERROR" in line:

 target.write(line)

o Count Specific Events: Count how many times “failed login” appears.

▪ count = 0

with open("auth.log", "r") as log_file:

 for line in log_file:

 if "Failed password" in line:

 count += 1

print(f"Failed logins: {count}")

o Using Generators: To process very large files lazily, you can use generator

functions. This approach doesn't store all lines in memory — it's ideal for big

data logs.

▪ def error_lines(filepath):

 with open(filepath) as f:

 for line in f:

 if "ERROR" in line:

 yield line

for error in error_lines("server.log"):

 print(error.strip())

o Handle Gzipped Log Files: Sometimes logs are compressed as .gz. You can

read them like this:

▪ import gzip

with gzip.open("server.log.gz", "rt") as log_file:

 for line in log_file:

 if "ERROR" in line:

 print(line.strip())

JSON and CSV Handling

1. JSON (JavaScript Object Notation) is a lightweight data interchange format that is

easy for humans to read and write, and easy for machines to parse and generate. It's

used primarily to exchange data between a server and a client, especially in web

applications. JSON structures data as key-value pairs, making it both simple and

flexible for various programming languages, including Python.

26

2. JSON looks like this:

{

 "name": "John",

 "age": 30,

 "city": "New York"

}

"name", "age", and "city" are keys.

#"John", 30, and "New York" are the corresponding values.

3. Why Do We Need to Use JSON in Python?

o Data Exchange: JSON is a common format for transferring data between

servers and clients. Python, being a versatile language, can handle JSON

easily, making it ideal for interacting with web APIs and other services.

o Readability: JSON is human-readable and easy to understand, which makes it

great for logging and debugging.

o Interoperability: Python uses the json module to parse and generate JSON

data, which allows it to work seamlessly with many web technologies and

systems that rely on JSON (e.g., APIs, web scraping, data storage).

o Lightweight: Compared to other data formats like XML, JSON is more

compact, which helps improve the performance of applications, especially in

situations with large datasets.

4. Python provides a built-in library called json to work with JSON data. Here’s how you

can use it:

5. Loading JSON Data (Parse JSON): To convert a JSON string into a Python dictionary,

you use json.loads() (load string):

o import json

JSON string

json_string = '{"name": "John", "age": 30, "city": "New York"}'

Parse JSON string into Python dictionary

data = json.loads(json_string)

print(data)

print(type(data))

#This converts the json_string into a Python dictionary, allowing you to work

with the data as if it were any other dictionary.

6. Writing JSON Data (Convert Python Object to JSON): To convert a Python dictionary

into a JSON string, you use json.dumps() (dump string):

o import json

Python dictionary

data = {

27

 "name": "John",

 "age": 30,

 "city": "New York"

}

Convert Python dictionary to JSON string

json_string = json.dumps(data)

print(json_string)

print(type(json_string))

7. Reading JSON from a File (json.load())

o # Reading from a file

with open('data.json', 'r') as f:

 data = json.load(f)

print(data["name"]) # Output: Alice

8. Parsing JSON logs

o Parsing means:

▪ Reading the JSON log (from a file or string),

▪ Converting it into a Python dictionary or object,

▪ Accessing its fields for analysis, filtering, or alerting.

o Why Parse JSON Logs?

▪ To detect suspicious activity (e.g., multiple failed logins).

▪ To extract fields like IPs, usernames, timestamps.

▪ To generate reports or alerts.

o Python Example: Parsing a JSON Log File: Suppose you have a log file with

one JSON object per line:

▪ {"timestamp": "2025-05-06T10:15:30Z", "event": "login", "user":

"alice", "ip": "192.168.1.10"}

▪ {"timestamp": "2025-05-06T10:17:00Z", "event": "failed_login",

"user": "bob", "ip": "10.0.0.5"}

Here’s how to parse it:

✓ import json

with open("logs.json", "r") as f:

 for line in f:

 log = json.loads(line) # Parse the JSON string into a dict

 if log["event"] == "failed_login":

 print(f"Failed login by {log['user']} from {log['ip']}")

28

9. Reading and writing CSV: CSV stands for Comma-Separated Values. It is a simple file

format used for storing tabular data, such as a spreadsheet or database. Each line in

a CSV file represents a row of data, and the columns are separated by commas (or

sometimes other delimiters like semicolons or tabs). It’s commonly used for data

exchange between different applications, such as exporting data from databases,

spreadsheets, or other systems.

o Example of a CSV File:

▪ Name,Age,Location

▪ John,25,New York

▪ Alice,30,San Francisco

▪ Bob,22,Chicago

✓ The first line defines the column headers: Name, Age, and

Location.

✓ The subsequent lines contain the data for each person: their

name, age, and location.

o Using the csv Module in Python: Python's csv module allows easy reading

from and writing to CSV files. Here's how you can work with CSV files using

Python.

o Reading a CSV file: You can read a CSV file by using the csv.reader() function,

which returns an iterator that will iterate over the lines in the specified CSV

file.

▪ import csv

Open the CSV file in read mode

with open('data.csv', mode='r') as file:

 csv_reader = csv.reader(file)

 # Loop through the rows and print them

 for row in csv_reader:

 print(row)

✓ ['Name', 'Age', 'Location']

✓ ['John', '25', 'New York']

✓ ['Alice', '30', 'San Francisco']

✓ ['Bob', '22', 'Chicago']

o Writing to a CSV file: You can write data to a CSV file using the csv.writer()

function. This allows you to create a new CSV file or overwrite an existing one.

▪ import csv

Data to write to the CSV file

data = [

 ['Name', 'Age', 'Location'],

29

 ['John', 25, 'New York'],

 ['Alice', 30, 'San Francisco'],

 ['Bob', 22, 'Chicago']

]

Open the CSV file in write mode

with open('new_data.csv', mode='w', newline='') as file:

 csv_writer = csv.writer(file)

 # Write the data to the file

 csv_writer.writerows(data)

✓ This will create a CSV file (new_data.csv) with the following

content:

Name,Age,Location

John,25,New York

Alice,30,San Francisco

Bob,22,Chicago

Regular expressions

re.search() and re.findall(): In Python, the re.search() and re.findall() functions are part of

the re (regular expressions) module, which is essential for pattern matching in text. These

functions are particularly useful for tasks in cybersecurity, such as searching for patterns in

log files, URLs, IP addresses, or other network-related data.

• re.search(): The re.search() function scans a string for a pattern and returns the

first match it finds. If it doesn't find any match, it returns None.

o Syntax:

▪ re.search(pattern, string)

o Parameters:

▪ pattern: The regular expression you want to match.

▪ string: The string you want to search in.

o Return: A match object if the pattern is found, otherwise None.

o Example: Searching for an IP address: Let's say you have a log file and you

want to find the first IP address in the text:

▪ import re

Sample log data

log_data = "Connection from 192.168.0.1 at 10:15:00"

Regex pattern for an IP address

30

pattern = r"\b\d{1,3}(\.\d{1,3}){3}\b"

Search for the pattern

match = re.search(pattern, log_data)

if match:

 print("Found IP address:", match.group())

else:

 print("No IP address found")

▪ Explanation:

▪ The regex pattern r"\b\d{1,3}(\.\d{1,3}){3}\b" matches an

IP address.

▪ match.group() retrieves the matched string (IP address).

o The regex pattern r"\b\d{1,3}(\.\d{1,3}){3}\b" is designed to match an IP

address in the form of four sets of 1 to 3 digits, separated by periods (e.g.,

192.168.0.1).

▪ \b: Word boundary (ensures the match is not part of a larger

word).

▪ \d{1,3}: Matches 1 to 3 digits (for each section of the IP address).

▪ (\.\d{1,3}){3}: Matches a period (\.) followed by 1 to 3 digits,

repeated 3 times (for the 3 periods separating the sections).

▪ \b: Word boundary (ensures the match is a complete IP address).

▪ Example matches:

▪ 192.168.0.1

▪ 10.0.0.1

▪ 172.16.0.5

▪ It will not match:

▪ 192.168.0.256 (invalid IP because 256 is over 255)

▪ abc192.168.0.1xyz (because it's not a complete word).

• re.findall(): The re.findall() function finds all non-overlapping matches of the

pattern in the string and returns them as a list.

o Syntax:

▪ re.findall(pattern, string)

o Parameters:

▪ pattern: The regular expression to search for.

▪ string: The string to search in.

o Return: A list of all matches.

31

o Example: Finding all IP addresses in a log file - If you want to find all IP

addresses in a log file, you can use re.findall()

▪ import re

Sample log data

log_data = """

Connection from 192.168.0.1 at 10:15:00

Connection from 10.0.0.1 at 11:20:00

Connection from 172.16.0.1 at 12:30:00

"""

Regex pattern for an IP address

pattern = r"\b\d{1,3}(\.\d{1,3}){3}\b"

Find all IP addresses

ips = re.findall(pattern, log_data)

print("Found IP addresses:", ips)

Explanation:

re.findall() returns all IP addresses found in the log_data.

The output would be a list of all IP addresses in the log data.

o How these functions are useful in cybersecurity

▪ Log Analysis: Extract IP addresses, user-agent strings, or other

relevant data from server or application logs.

▪ Pattern Detection: Look for specific patterns like suspicious URLs,

IPs, or commands in network traffic captures (e.g., from Wireshark

or Zeek).

▪ Malware Analysis: Detect patterns related to command-and-

control communications or file names used by malware.

▪ Phishing Detection: Identify potentially dangerous links by

checking URL patterns.

• Writing Patterns to Match Log or Payload Content:
o Match Email Addresses: This script searches the log for an email address

format and prints it if found. Useful for extracting user credentials or
indicators in logs.

▪ import re
log = "User test@example.com failed to login from 192.168.1.5"
pattern = r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b"
match = re.search(pattern, log)
if match:
 print("Found email:", match.group())

32

o Match URLs (Phishing Detection): This script finds and lists all URLs in the
input string. Great for detecting phishing links in payloads or emails.

▪ log = "Malicious link: http://bad.com/path?query=123"
pattern = r"http[s]?://[^\s<>\"']+"
urls = re.findall(pattern, log)
print("Found URLs:", urls)

o Match Timestamps: Finds timestamps in YYYY-MM-DD HH:MM:SS
format. Helps correlate events in logs during an investigation.

▪ log = "Login failed at 2025-05-06 14:22:01 from 10.0.0.2"

pattern = r"\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}"
timestamp = re.search(pattern, log)
if timestamp:
 print("Found timestamp:", timestamp.group())

o Match HTTP Methods: Extracts HTTP methods (e.g., GET, POST). Useful
when analyzing web server logs for request behavior.

▪ http_request = "POST /login HTTP/1.1"

pattern = r"\b(GET|POST|PUT|DELETE|HEAD|OPTIONS)\b"
method = re.search(pattern, http_request)
if method:
 print("Found HTTP method:", method.group())

o Match Failed Login Attempts: Detects failed SSH login attempts and
extracts the attacker’s IP address. Very useful in brute-force detection.

▪ log = "ERROR: Failed password for invalid user root from
192.168.0.101"

pattern = r"Failed password for .* from (\b\d{1,3}(\.\d{1,3}){3}\b)"
match = re.search(pattern, log)
if match:
 print("Failed login from IP:", match.group(1))

Using External Libraries

1. Installing packages with pip:

• Installing packages with pip in Python is how you add external libraries (modules)

that aren't included in the standard library. Here's a quick guide to using pip

• Basic Installation Command

o pip install package_name

• For example: It installs the requests library, which lets Python send HTTP

requests easily

o pip install requests

• Common Variants

o Install latest version: pip install somepackage

o Install specific version: pip install somepackage==1.2.3

o Update to latest version: pip install --upgrade somepackage

33

o Remove package: pip uninstall somepackage

o Show all installed packages: pip list

o Output installed packages (useful for requirements.tx)t: pip freeze

• Installing from requirements.txt: pip install -r requirements.txt

2. importing modules: In Python, importing modules allows you to reuse code written

in other files or packages. This is essential for organizing programs and using built-in

or third-party functionality.

• Import the whole module

o import math

print(math.sqrt(16)) # Output: 4.0

• Import with an alias

o import numpy as np #use np instead of typing numpy everytime

print(np.array([1, 2, 3]))

• Import specific functions or variables

o from math import sqrt, pi

print(sqrt(25)) # Output: 5.0

print(pi) # Output: 3.141592653589793

• Import all names (not recommended): Avoid this style in larger scripts—can

cause name conflicts.

o from math import *

print(sin(pi / 2)) # Output: 1.0

• Importing Your Own Files: instead of writing all codes in one file it’s better to

separate them into different files then link them all together like HTML

o Create two python files first example, main.py and calc.p

o In the calc.py write some lines of code example

▪ Def add (a,b):

 return a+b

Def sub (a,b):

 return a-b

Def multiple (a,b):

 return a*b

o In the second file main.py

▪ from calc import * #linking main.py to calc.py

a,b = 1,2

C = add(a,b)

#passing two variables to another module or file File and Log

Handling

34

3. Common modules os, sys, time, and random

• os Module: The os module provides a way of interacting with the operating

system. It allows you to perform tasks like manipulating file paths, reading

environment variables, and managing processes.

o Key Functions:

▪ os.getcwd(): Get the current working directory.

▪ os.listdir(): List files in a directory.

▪ os.rename(): Rename a file.

▪ os.remove(): Remove a file.

o Example:

▪ import os

Get current working directory

current_directory = os.getcwd()

print(f"Current Directory: {current_directory}")

List files in the current directory

files = os.listdir(current_directory)

print(f"Files in current directory: {files}")

Create a new directory

os.mkdir("new_directory")

Rename the directory

os.rename("new_directory", "renamed_directory")

Remove the directory

os.rmdir("renamed_directory")

• sys Module: The sys module allows you to interact with the interpreter and

system-specific parameters. It can help with managing command-line

arguments, exiting the program, and modifying the system path.

o Key Functions:

▪ sys.argv: A list of command-line arguments passed to the

script.

▪ sys.exit(): Exit the program.

▪ sys.path: A list of directories that the interpreter searches for

modules.

o Example:

▪ import sys

Check command-line arguments

if len(sys.argv) > 1:

35

 print(f"Arguments: {sys.argv}")

else:

 print("No arguments provided.")

Exit the program

sys.exit("Exiting the program now.")

• time Module: The time module provides functions for working with time,

including measuring execution time, pausing execution, and formatting

dates/times.

o Key Functions:

▪ time.sleep(): Pause execution for a specified number of

seconds.

▪ time.time(): Get the current time in seconds since the epoch

(1970).

▪ time.strftime(): Format a time object as a string.

o Example:

▪ import time

Pause for 2 seconds

print("Starting the pause...")

time.sleep(2)

print("Pause complete.")

Measure execution time

start_time = time.time()

time.sleep(1)

end_time = time.time()

execution_time = end_time - start_time

print(f"Execution time: {execution_time} seconds")

Format current time

current_time = time.strftime("%Y-%m-%d %H:%M:%S",

time.gmtime())

print(f"Current time: {current_time}")

• random Module: The random module provides functions for generating

random numbers, shuffling items, and choosing random elements from

sequences.

o Key Functions:

▪ random.randint(): Generate a random integer in a specified

range.

▪ random.choice(): Choose a random element from a list.

▪ random.shuffle(): Shuffle a list randomly.

36

o Example

▪ import random

Generate a random integer between 1 and 10

random_int = random.randint(1, 10)

print(f"Random integer: {random_int}")

Choose a random item from a list

fruits = ["apple", "banana", "cherry"]

random_fruit = random.choice(fruits)

print(f"Random fruit: {random_fruit}")

Shuffle a list

random.shuffle(fruits)

print(f"Shuffled list: {fruits}")

• Summary of Key Points:

o os: For interacting with the operating system (files, directories,

processes).

o sys: For interacting with the Python interpreter (command-line
arguments, exiting the program).

o time: For working with time (pausing execution, measuring
performance, formatting times).

o random: For generating random numbers and making random
selections (useful for simulations, games, etc.).

Debugging and Logging

1. Using pdb for Step-by-Step Debugging: Using pdb (Python Debugger) for step-by-

step debugging is a powerful way to inspect and control your code execution. Here's

a practical guide on how to use it effectively:

• Insert pdb in Your Code: To start debugging at a specific line, insert:

o import pdb; pdb.set_trace() #This will pause execution and drop you

into the interactive debugger.

• Basic pdb Commands

o N: Next line (step over function calls)

o S: Step into the function

o C: Continue execution until the next breakpoint

o Q: Quit debugger

o L: List code around the current line

o P: Print the value of a variable (p var_name)

o B: Set a breakpoint (b 12 sets it at line 12

o C1: Clear breakpoints (cl or cl 12)

o !: Run a Python command (e.g., !x + 1)

37

o H: Show help

• Example

o def add(x, y):

 result = x + y

 return result

def main():

 a = 5

 b = 10

 import pdb; pdb.set_trace() # <-- Debugging starts here

 c = add(a, b)

 print(c)

main()

#When you run this, Python will stop at pdb.set_trace() and allow you

to inspect variables and step through code.

2. Logging with logging Module (vs. print): Using the logging module instead of print()

in Python is considered best practice for serious or production-level code. Here's a

breakdown of why and how you should use logging.

• print() vs. logging

Feature print() logging Module

Output Destination Always stdout stdout, file, network, etc.

Message Level No level (just prints) Supports DEBUG, INFO, WARNING, ERROR

Filtering Not supported Yes (via log level)

Configurable Format Manual formatting

only

Built-in formatting options

Scalable for

Production

 Not suitable Standard for production

Timestamp /

Metadata

Must add manually Automatic with configuration

38

• Basic Example

o import logging

logging.basicConfig(level=logging.INFO)

logging.info("This is an info message.")

#Output:

INFO:root:This is an info message.

• Logging Levels:

o DEBUG: Detailed diagnostic info

o INFO: General information (e.g., progress)

o WARNING: Something unexpected but not fatal

o ERROR: A serious problem, part of app failed

o CRITICAL: Severe problem, app may crash

• More Configurable Logging

o logging.basicConfig(

 level=logging.DEBUG,

 format='%(asctime)s - %(levelname)s - %(message)s',

 filename='app.log', # log to file

 filemode='w' # overwrite file each run

)

logging.debug("Debug message")

logging.info("Info message")

logging.warning("Warning!")

logging.error("Error occurred")

logging.critical("Critical issue")

Virtual environments

Creating Isolated Environments with venv: Creating isolated environments with venv in

Python is an essential practice, especially in cybersecurity, scripting, and development work,

because it keeps dependencies organized and prevents conflicts between projects.

• It’s a tool in Python that lets you create a mini environment just for your project

• You can install packages without affecting other projects.

• Everything stays clean and organized.

39

• For Windows

o Go to your project folder: Open Command Prompt (or PowerShell), then:

▪ cd my_project

o Create a virtual environment:

▪ python -m venv env #env is the name of the environment

folder. You can name it anything (e.g., .venv, venv, myenv)

o Activate the environment:

▪ env\Scripts\activate

o You’ll now see:

▪ (env) C:\Users\You\my_project>

o Install packages:

▪ pip install requests

o Deactivate when done:

▪ Deactivate

• For Linux/macOS

o Go to your project folder:

▪ cd my_project

o Create a virtual environment:

▪ python3 -m venv env

o Activate the environment:

▪ source env/bin/activate

o You’ll now see:

▪ (env) $

o Install packages:

▪ pip install requests

o Deactivate when done:

Script Structure and Best Practices

Structuring your Python scripts properly is essential for writing maintainable, reusable, and

testable code, especially in cybersecurity and hacking where you'll often reuse scripts or

modules in multiple contexts. Here's a clear guide to Python script structure and best

practices, including how and why to use the if __name__ == "__main__": guard.

• Ideal Python Script Structure

o #!/usr/bin/env python3

"""

Module Docstring:

A brief description of what this script does.

Author: Your Name

40

Date: YYYY-MM-DD

"""

import sys

import os

import argparse

import logging

=== Constants ===

VERSION = "1.0"

=== Functions ===

def do_something_important():

 """Performs the main task."""

 pass # Replace with real logic

=== Classes (if needed) ===

class Tool:

 def __init__(self):

 pass

 def run(self):

 do_something_important()

=== Main Function ===

def main():

 """Main execution logic."""

 parser = argparse.ArgumentParser(description="Describe your script.")

 parser.add_argument("-v", "--verbose", action="store_true", help="Enable

verbose output")

 args = parser.parse_args()

 if args.verbose:

 logging.basicConfig(level=logging.DEBUG)

 logging.debug("Verbose mode enabled")

 do_something_important()

=== Entry Point ===

if __name__ == "__main__":

 main()

41

• Why Use if __name__ == "__main__": When you run a Python file, Python sets the

special variable __name__:

o If the file is run directly → __name__ == "__main__"

o If the file is imported as a module → __name__ == "filename"

• Purpose of the Guard

o Ensures that main() runs only when the script is executed directly.

o Prevents unintended execution when the file is imported into another script.

▪ file: tools.py

• def say_hello():

 print("Hello!")

def main():

 print("Running main function")

if __name__ == "__main__":

 main()

▪ file: app.py

• import tools

tools.say_hello()

#say_hello() runs.

#main() does not run, because tools.py was imported.

#So you can use say_hello() without running the full program

in tools.py

• Best Practices Checklist

o Imports: Standard library first, then 3rd-party, then your own modules.

Alphabetical or logical order.

o Docstrings: Add a module-level and function-level docstring. Use """Triple

quotes""".

o Main Function: Wrap execution logic in main() to keep global scope clean.

o Argument Parsing: Use argparse to handle CLI arguments instead of sys.argv.

o Logging: Use logging instead of print() for real scripts. It's more flexible.

o Constants: Use UPPER_CASE for constants.

o Testing: Structure code so functions can be tested independently.

o Naming: Use snake_case for functions/variables and CamelCase for classes.

o Modularization: Break complex scripts into multiple files/modules if needed.

o Virtual Environments: Use venv to isolate dependencies.

• Example Use Case: Cybersecurity Script

port_scanner.py

def scan_ports(target_ip):

 """Scans ports on a given target IP."""

42

 pass

def main():

 import argparse

 parser = argparse.ArgumentParser(description="Simple Port Scanner")

 parser.add_argument("ip", help="Target IP address")

 args = parser.parse_args()

 scan_ports(args.ip)

if __name__ == "__main__":

 main()

o You can now also import scan_ports in another tool:

▪ from port_scanner import scan_ports

▪ scan_ports("192.168.1.1")

API Interaction

API Interaction in Python involves sending requests to external services (usually web

servers) and processing their responses — often to fetch data or perform actions. In

cybersecurity, it’s especially useful for automating tools, querying threat intel databases, or

working with services like VirusTotal or Shodan.

• Using requests.get() and requests.post(): Python’s requests library is a user-friendly

HTTP client for sending API requests.

o Installation: pip install requests

o GET request (fetch data)

▪ import requests

url = "https://jsonplaceholder.typicode.com/posts/1"

response = requests.get(url)

print(response.status_code) # 200 means success

print(response.text) # Raw response

o POST request (send data)

▪ url = "https://jsonplaceholder.typicode.com/posts"

data = {"title": "CyberSec", "body": "Testing API", "userId": 1}

response = requests.post(url, json=data)

print(response.status_code)

print(response.json()) # Parses JSON response directly

43

• Parsing API Responses (JSON): Most modern APIs return JSON. Use .json() to parse

the response.

response = requests.get("https://jsonplaceholder.typicode.com/users/1")

data = response.json()

print(data["name"]) # Get the user's name

print(data["address"]["city"]) # Nested field

o Looping through a JSON list:

▪ response =

requests.get("https://jsonplaceholder.typicode.com/posts")

posts = response.json()

for post in posts[:3]:

 print(f"ID: {post['id']} | Title: {post['title']}")

• Sending Headers and Authentication Tokens: APIs often require headers, especially

for auth.

o Custom headers

▪ headers = {

 "User-Agent": "CyberSecBot/1.0"

}

response = requests.get("https://httpbin.org/headers",

headers=headers)

print(response.json())

o Bearer Token Authentication: Useful for APIs like VirusTotal, Shodan, etc.

▪ headers = {

 "Authorization": "Bearer YOUR_API_TOKEN"

}

response = requests.get("https://api.example.com/data",

headers=headers)

print(response.status_code)

• Summary

o Send GET request: requests.get(url)

o Send POST request: requests.post(url, ...)

o Read JSON response: response.json()

o Add headers (like tokens): headers={"key": "val"}

44

Command-Line and System Interaction

Command-Line and System Interaction in Python refers to using Python to:

• Accept and handle arguments passed from the terminal (command-line).

• Run shell or terminal commands (like ls, ping, or nmap) from Python.

• Capture and process the output of these commands.

This is very important in cybersecurity and hacking tools — since many are CLI-based,

automating them or interacting with their outputs programmatically can give you a huge

advantage.

1. Using sys.argv for Command-Line Arguments : This allows your script to take inputs

directly from the command line.

save as cli_args.py

import sys

print("Script name:", sys.argv[0]) # always the script name

print("Arguments passed:", sys.argv[1:]) # arguments start from index 1

• Run it like this :

▪ python cli_args.py arg1 arg2

#Output:

Script name: cli_args.py

Arguments passed: ['arg1', 'arg2']

• Use case (e.g., IP scanner):

import sys

import os

if len(sys.argv) < 2:

 print("Usage: python scanner.py <target_ip>")

 sys.exit(1)

target_ip = sys.argv[1]

os.system(f"ping -c 4 {target_ip}")

2. Running Shell Commands with subprocess:

• The subprocess module lets you run shell commands in a safe and controlled

way (better than os.system).

▪ import subprocess

This runs the command

subprocess.run(["ls", "-l"])

45

• With a single string (requires shell=True): Be careful with shell=True if you use

untrusted input (to avoid shell injection attacks).

▪ subprocess.run("ls -l", shell=True)

3. Capturing Output from Terminal Tools

• If you want to read the output of a command (e.g., nmap, ifconfig, netstat,

etc.), use subprocess.check_output() or subprocess.run(...,

capture_output=True):

• import subprocess

Capture command output as text

output = subprocess.check_output(["whoami"], text=True)

print("Current user is:", output.strip())

• Or using subprocess.run:

▪ result = subprocess.run(["ifconfig"], capture_output=True, text=True)

print(result.stdout) # output

N.B: You can also use this to parse command output in tools like: netstat, ip a, ping,

tcpdump, nmap, etc.

• Quick Example: Parse Ping Result

▪ import subprocess

import sys

if len(sys.argv) != 2:

 print("Usage: python ping_parse.py <ip>")

 sys.exit(1)

ip = sys.argv[1]

result = subprocess.run(["ping", "-c", "2", ip], capture_output=True,

text=True)

if "0 received" in result.stdout:

 print(f"{ip} is DOWN")

else:

 print(f"{ip} is UP")

From Network Scripting (Python Checklist) ➔ Practice

